WB
Member Since 1958
Wilf H. Brutsaert
Professor, Cornell University
Honors and Awards

William Bowie Medal
Received December 2015
Wilfried Brutsaert was awarded the 2015 William Bowie Medal at the AGU Fall Meeting Honors Ceremony, held on 16 December 2015 in San Francisco, Calif. The medal is for “outstanding contributions to fundamental geophysics and&#x2028for unselfish coope...
Wilfried Brutsaert was awarded the 2015 William Bowie Medal at the AGU Fall Meeting Honors Ceremony, held on 16 December 2015 in San Francisco, Calif. The medal is for “outstanding contributions to fundamental geophysics and&#x2028for unselfish cooperation in research.”  
Citation

Besides his outstanding personal contributions in research, Dr. Brutsaert has made a lasting imprint through the unselfish cooperation he embodies in all his activities. First, this is brought out by the professional success of his former graduate students, who have benefited from his generous and devoted collaborative mentorship in research. Second, since the early 1980s, Dr. Brutsaert has been a worldwide leader in bringing together the hydrologic and atmospheric research communities in the planning, design, and operation of large-scale international field experiments. Finally, Dr. Brutsaert has shown exemplary service commitment to his colleagues. Most notably, he has been directly involved in leadership in several organizations, including AGU, the American Meteorological Society (AMS), and the National Academy of Engineering (NAE).

Some highlights of his research contributions can be found in the following areas: (1) Physics of evaporation: Dr. Brutsaert was the first to successfully incorporate the effect of molecular diffusivity in the description of evaporation and heat transfer in the environment. (2) -Land--atmosphere interactions: He has largely unraveled the issue of scaling in evaporation, from local scales to various macroscales. (3) Surface runoff: Dr. Brutsaert was the first to provide a realistic description of base flow using groundwater theory rather than by regression or curve fitting. (4) Porous materials: He extended Biot’s theory of poroelasticity to materials containing two fluids, as found in petroleum engineering. (5) Climate change: Dr. Brutsaert is one of the few who have clarified hydrological aspects of global climate change. His 1998 paper in Nature resolved the “evaporation paradox” with evidence of a worldwide accelerating water vapor cycle. Later, he initiated a radically new method to deduce climatic trends from long-term river flow records.

In addition to his articles are his two landmark scholarly books, both international best sellers: Evaporation into the Atmosphere (Springer, 1982) and Hydrology (Cambridge University Press, 2004).

Among the many awards he has received, he was elected to the NAE, AGU awarded him the Hydrologic Sciences Award and the Horton Medal, and the AMS awarded him the Jule G. Charney Award and elected him an Honorary Member, its highest award. The Japan Society of Hydrology and Water Resources awarded him its International Award and made him an Honorary Member. The Japan Society for the Promotion of Science gave him the Award for Eminent Scientists.

In conclusion, it is difficult to imagine a colleague more deserving of the Bowie Medal.

—Jean-Yves Parlange, Cornell University, Ithaca, N.Y.

Response
President Leinen, friends, and colleagues, Looking back I have to wonder how it all finally came to this because this outcome really was never in the cards. My early years were certainly not a prologue for a scientific career, what with the vagaries of a bloody, cataclysmic world war in Europe and the severe physical and financial limitations with which our parents had to raise my five siblings and me. Then, my secondary education was mainly directed to the study of classical Latin and Greek as an ideal preparation for a career in law, literature, and philosophy, with only perfunctory coverage of mathematics and physics. In spite of this meager science background, but guided by some youthful idealism, I decided to become involved with problems in the developing world. This led to a major in agricultural water engineering at the University of Ghent, to acquire the practical skills needed for some admittedly vague objectives. But several turnarounds and milestones took me from an intended hydraulic engineering career to—subtle difference—a life in hydrologic science. Among them, there was a student internship with an anti-erosion organization in Africa, starting my fascination with theories of atmospheric turbulent transport. There was also my interaction with Don Kirkham, whose mathematical approach in soil physics left an indelible mark. A most notable turning point occurred at the University of California – Davis in 1959, when Don Nielsen insisted that I join AGU. I felt immediately at home. Since then, the atmosphere of both scholarship and comradeship at AGU has broadly shaped the remainder of my professional life. In light of everything I owe AGU, it’s really difficult here to find the proper words to express my gratitude for this ultimate recognition. So, I will simply say thank you, and in the same breath also include Jean-Yves Parlange, Kuo-Nan Liou, and the letter writers for the nomination, as well as the members of the Bowie Medal Committee for their confidence. And although she doesn’t want me to, I gratefully acknowledge the support of my wife Toyo, my best friend and companion for the past half century. Finally, nobody lives in a vacuum and we are all shaped by our environment. Therefore, this award fills me with great satisfaction because it reflects not just on me, but more so on the many colleagues and students with whom I had the privilege and pleasure to work over the years. —Wilfried Brutsaert, Cornell University, Ithaca, N.Y.
See Details
Close Details
Robert E. Horton Medal
Received December 1999
Wilfried H. Brutsaert was awarded the 1999 Horton Medal at the AGU Fall Meeting Honors Ceremony, which was held on December 15, 1999, in San Francisco, California. The Horton Medal is given for outstanding contributions to geophysical aspects of hydr...
Wilfried H. Brutsaert was awarded the 1999 Horton Medal at the AGU Fall Meeting Honors Ceremony, which was held on December 15, 1999, in San Francisco, California. The Horton Medal is given for outstanding contributions to geophysical aspects of hydrology.  
Citation

“The Horton Medal is for ‘outstanding contributions to geophysical aspects of hydrology.’ By any measure chosen, Wilf Brutsaert is most deserving of this honor.

“I first met Wilf in 1981 when we worked together on the editorial board of Water Resources Research. I quickly came to value his wise counsel and friendship and the depth and breadth of his scholarship. He is extremely generous with his time for family, friends, students, and colleagues. He provides intellectual leadership to the community through his personal scholarship and collaborations. He brings the enthusiasm of the brightest and most energetic, recently graduated Ph.D. to all that he does. His decades of leadership within AGU and in numerous activities that have yielded scientific opportunities for many have been absolutely selfless.

“Wilf has investigated primarily the fluid mechanics of environmental phenomena to solve critical problems of hydrology. His research constitutes a perfect balance of theory with careful and appropriate experiments. He has published pioneering and lasting papers on vadose-zone and hillslope hydrology, gas exchange at air-water interfaces, and aquifer dynamics. He is best known, however, for his original and incisive contributions in the description of the transport of vapor through the Earth-atmosphere boundary layer and has been at the forefront of establishing programs that make the best use of both groundbased and remote platform measurements to quantify evapotranspiration. As an example of his influence, authors now refer to one of his similarity schemes as the ‘Penman-Brutsaert’ approach.

“Wilf writes beautifully, never overstating the case, and always places the situation into perspective. There are several examples that highlight the breadth and depth of his work on evapotranspiration. His 1976 paper with Mawdsley, The application of planetary boundary layer theory to calculate regional evaporation, revolutionized the use of atmospheric boundary layer fluid mechanics to estimate regional evapotranspiration. His 1986 paper, Catchment scale evaporation and the atmospheric boundary layer, provided the foundation for the direction of significant ongoing research by many colleagues. The 1992 paper with Sugita, Landsat surface temperatures and radiosoundings to obtain regional surface fluxes, and the 1996 paper written with Qualls, Evaluation of spatially distributed ground-based and remotely sensed data to estimate spatially distributed sensible heat fluxes, demonstrate his penchant for tackling ‘wicked,’ real-world problems. His 1998 Nature paper with Marc Parlange on the Evaporation Paradox resolves a thorny problem in hydrology and a key issue in the current global change debate.

“Wilf cares deeply about and makes the considerable effort to research the history of our field. An example is from his 1992 AMS Horton Lecture, Horton, pipe hydraulics and the atmospheric boundary layer (Bulletin of the American Meteorological Society, June 1993) in which he traced the theoretical developments of the atmospheric boundary layer methods used to estimate vapor transport from large land areas. He identified the critical measurements supporting the early theoretical developments of Blasius and Prandtl as those conducted in 1902-1903 at the Hydraulics Laboratory at Cornell University, Wilf’s academic home, to determine resistance to water flow in pipes. (Robert Horton worked with the research staff, Saph and Schoder, soon after they completed this work.) Before Wilf’s lecture, few knew about the early fundamental measurements underpinning this theory.

“Marc Parlange summed up Wilf’s work: ‘He has done it all in hydrology. He has carried out brilliant research in numerical and analytical methods for partial differential equations describing environmental transport, he has collected precious laboratory and field measurements which remain benchmarks for theoretical comparisons, and he has developed foundational theories for the description of regional hydrology and land-atmosphere vapor exchange. No physical hydrologist has ever touched so many areas in such depth.’ Kuo-Nan Liou commented that Wilf’s 1982 book on evaporation into the atmosphere ‘has been and is still considered by many scientists in atmospheric and hydrological disciplines to have provided the physical foundation for the connection of the land surface and atmospheric boundary layer.’ Jeff Dozier observed that this ‘is the best reference book on my shelf.’

“Wilf Brutsaert embodies all that is good about AGU, is the complete academic scholar-teacher and research scientific leader, and exemplifies ‘unselfish cooperation in research.’ President Knauss, ladies and gentlemen, it is a privilege and honor to present my friend and colleague, the winner of the 1999 Horton Medal, Wilfried Brutsaert.”

—STEVEN J. BURGES, University of Washington, Seattle

Response
“Thank you, Steve, for your generous citation. “Mr. President, ladies, and gentlemen, despite what Steve Burges has just been trying to tell you, the reality is that I have somehow had the good fortunes of being at the right place at the right time and of meeting the right people at different junctures in my life. “Certainly, it was nothing but a coincidence and mostly sheer luck that when I arrived on a freighter and first set foot on this continent as a fresh graduate to hitchhike my way from New York to California, Sputnik had just been launched. This event, in the middle of the Cold War, would eventually lead to what was probably one of the largest expansions and hiring sprees in the history of higher education in this country. Of course, I had no way of knowing then that I would end up in a life of research and teaching and that it would eventually come to this. “I was also unbelievably fortunate in being able to interact with several outstanding individuals, and there is no question that whatever this medal holds or reflects, the merits are as much theirs as they are mine. As early as my undergraduate years in Ghent, it was a stroke of good luck that I was exposed to the mathematical discipline of Gerard Heyndrickx and to the straightforward charisma of Don Kirkham, which made me decide to go on to graduate school. It was Kirkham who then steered me to one of his former graduate students, Jim Luthin, at the University of California at Davis, which at that time was one of only a handful of institutions where hydrology was being approached in a comprehensive and fundamental way. At Davis, Don Nielsen’s analytical and experimental insights exerted a lasting influence on my thinking. And after I came to Cornell, my almost daily interactions with Jim Liggett, Gerhard Jirka, and, more recently, Jean-Yves Parlange were invaluable and stimulating. Among the other colleagues who were a source of inspiration and motivation over the years, I have to mention Giichi Yamamoto at Tohoku-Dai in Sendai, Dirk Kraijenhoff van de Leur at Wageningen, Herbert Lang at the ETH in Zurich, Peter Eagleson at MIT, Francois De Troch at Ghent, and Kuo-Nan Liou at UCLA. In addition, over the years I have been blessed by a steady stream of graduate students. They are too numerous for me to thank them by name here and now, but they know who they are. Let me just say that to work with them has been one of my life’s greatest pleasures. Finally, I would have liked to recognize my wife, Toyo, my close companion and friend for the past three decades. But I know she doesn’t want me to talk about that…. “In closing, I want to express my gratitude to AGU for bringing us all together here in this spirit of fellowship and cooperation and to the members of the Horton Medal Committee for their trust and confidence.” —WILFRIED H. BRUTSAERT, Cornell University, Ithaca, N.Y.
See Details
Close Details
Walter Langbein Lecture
Received May 1997
Peter S. Eagleson Award
Received December 1988
Union Fellow
Received January 1982