Dr. AghaKouchak is among the most creative and productive young scientists in our profession, and his scholarship, international standing, outreach, and service to the community are widely acknowledged and admired at an early stage of his career. Dr. AghaKouchak’s research accomplishments in hydrology and natural hazards and service activities provide ample evidence in the two primary criteria for the James B. Macelwane Medal: (1) depth, breadth of research, impact, creativity, and novelty and (2) service, outreach, and diversity.
Dr. AghaKouchak’s research bridges the traditional disciplines of hydrology, climatology, and remote sensing to address critical global water resource issues. His research combines remote sensing techniques and physically based and statistical approaches to improve the characterization, modeling, and prediction of large-scale hydrologic systems. His group developed a multivariate multi-index drought monitoring approach, named the Multivariate Standardized Drought Indicator (MSDI). Within a short period of time, other multivariate indicators were developed on the basis of the MSDI concept. The main innovation of the approach is that it allows integrating different types of data (e.g., precipitation, soil moisture, and runoff) for composite drought assessment.
His group also developed the first methodological framework for describing socioeconomic drought. Most drought monitoring frameworks primarily focus on large-scale atmospheric–land surface conditions and ignore the human dimension. He proposed a framework for assessing water availability while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. His group developed a hybrid statistical-dynamical modeling framework for improving drought prediction. In this approach, unlike previous studies where a statistical model was used for postprocessing, a dynamical and statistical model work in parallel, but they are linked through an expert advice algorithm. The uniqueness of the approach is that it combines the strength of physically based dynamical simulations and the capabilities of statistical models. Another contribution was to formulate a novel multivariate framework for evaluating the risk of compound hazards. His group showed that the current flood risk assessment methods underestimate the actual risk of coastal flooding because they do not consider the compounding effects of ocean and terrestrial flooding.
Dr. AghaKouchak has achieved an extraordinary international standing through fundamental contributions at an early stage of his career and has been very proactive in service and outreach and in promoting diversity and inclusive excellence. In just a few years, he has earned the respect and admiration of his peers, and he will continue his leadership role in the field in the future.
—Isabella Velicogna, University of California, Irvine
It is a great pleasure for me to announce Amir AghaKouchak as the successful recipient of the 2017 AGU Hydrologic Sciences Early Career Award for developing new methods for the study of hydrological extremes by combining societal relevance and scientific novelty.
Societal relevance has consistently characterized Amir’s work. One of the most striking examples is provided by his work on anthropogenic drought. Amir led a multidisciplinary team of scientists, and drawing from California’s drought, he developed key insights that are not only scientifically important but also relevant for water resources management in a changing climate. Studies of drought impacts on water resources primarily focus on large-scale atmospheric conditions and ignore the human dimension. Amir’s work has outlined a solid methodological framework for assessing water availability while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes.
Scientific novelty has also been an important part of Amir’s work. Amir has developed seminal studies advancing statistical hydrology. In the most recent papers, for example, he co-developed new methods to deal with nonstationary processes. Moreover, throughout his career, he has demonstrated the value of remote sensing data for the study of hydrological extremes and proposed new tools to exploit new sources of information. Amir’s work has been groundbreaking. This is demonstrated by his remarkable publication record, which includes papers in multidisciplinary journals such as Nature, Science, and Proceedings of the National Academy of Sciences.
The impact of Amir’s work has accelerated exponentially over the past few years, speaking to the importance and relevance of his studies. Many scholars have built on his work in many areas of the world. This is also demonstrated by the fact that his research has been well funded by prestigious sources, speaking again to its rigorous character and significance. As a result, only a few years after his Ph.D., Amir has received by the community a solid reputation.
Exceptional productivity, extraordinary outreach, and tireless dedication to students and postdocs did not prevent Amir from providing service to the scientific community. Amir has been an editor and associate editor of various journals including Earth’s Future. He has also been very active within AGU and the International Association of Hydrological Sciences by serving on committees, such as AGU’s Horton Research Grant and Graduate Student Award, and organizing conferences.
In conclusion, groundbreaking research, original ideas, and societal relevance along with unselfish service to the scientific community make Amir AghaKouchak the most deserving candidate for the 2017 AGU Hydrologic Sciences Early Career Award.
—Giuliano Di Baldassarre, Uppsala University, Uppsala, Sweden