David Dunlophas made major discoveries with far-reaching implications in geophysics through his experimental research on magnetite fine particles and by developing, with Professor Wyn Williams, the first 3D numerical model for nanostructured magnetite, predicting unusual vortex spin structures in it. The widely used tome Rock Magnetism: Fundamentals and Frontiers was co-authored by David and his wife and research partner, Dr. OzdenOzdemir. Along with her and many colleagues, students and postdocs, David Dunlop has written over 200 research articles and two dozen chapters to elucidate why ultrafine magnetite and other iron minerals are such vital contributors to the stable memory of ancient magnetic fields in many planetary crusts and meteorites.
I have known David for more than 50 years now. He has never been a solo sprinter in science. His generosity to me and a hundred other scientists, especially the younger ones, is legendary. He has made significant contributions to the development of strong research in rock magnetism internationally. He has served the Canadian Geophysical Union, AGU and our international body, the International Association of Geomagnetism and Aeronomy (IAGA), in many roles of leadership to advance geomagnetism worldwide.
I will cite now some of my personal choices among David’s ingenious discoveries in magnetism. During the early days of our lunar sample research, some of us were trying to use rates of acquisition curves in a steady field of viscous magnetization versus time in a small magnetic field. But the soil did not always preserve its magnetic memory by the time one turned around! David sorted out the problem by reminding us that viscosity can work both ways: acquisition and decay. The decay constant for the iron in soils was so large that the imparted magnetization literally decayed in front of our eyes. Similarly, at a 1973 IAGA conference in Japan, David presented a heuristic model by which ocean crust at suitable depths being warmed by thermal gradient could overcome internal energy barriers and add to the stable remanent signal if the ambient temperature was not above the Curie point, of course.
With his experimental acumen and legendary data sharing, David Dunlop has served the magnetic community in many ways. His time versus temperature nomograms for magnetite- and pyrrhotite-bearing rocks have been used by many colleagues to infer the original depths that the rock came from after exhumation. Because of his thorough preservation of well-characterized data magnetic techniques are now used in planetology, biomagnetism and reading paleoclimate change records in China.
— Subir K. Banerjee
University of Minnesota Twin Cities
Minneapolis, Minnesota