For two decades, Maria Zuber – the E. A. Griswold Professor of Geophysics at the Massachusetts Institute of Technology – has led the geophysical exploration of the Moon, Mars, Mercury, and the asteroids. That she is AGU’s 2012 Harry H. Hess Medalist is because of her leadership of multiple spacecraft experiments and an entire mission; her rigorous analysis of the observations from those experiments to advance our understanding of the form, internal structure, and evolution of solar system objects; and her development of mathematical and numerical models of planetary deformational and interior dynamical processes.
Her principal tools have been laser altimetry and planetary gravity fields. Zuber led the analysis of laser ranging data from the lunar Clementine mission to produce the first global topographic map of the Moon. With that map, and a newly determined lunar gravity field, she produced the first global model of lunar crustal structure, which changed our understanding of the nature of isostatic compensation early in lunar history and elucidated for the first time the strongly aspherical nature of internal temperature and melt production in the lunar mantle. The Lunar Orbiter Laser Altimeter on the Lunar Reconnaissance Orbiter, an experiment for which Zuber is Deputy Principal Investigator, and the dual-spacecraft Gravity Recovery and Interior Laboratory mission, for which she is Principal Investigator, are now revolutionizing our understanding of the lunar topography and gravity fields, respectively, and their implications for lunar magmatism, tectonics, impact cratering, and interior differentiation and dynamics.
The Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft, an experiment for which Zuber served as Deputy Principal Investigator, produced the first high-resolution global topographic map of Mars and stimulated a new understanding of all phenomena that affect the Martian surface, from cratering and deformation, to volcanism and atmospheric circulation, to the erosional and depositional action of water and ice. From the first global map of crustal thickness on Mars, Zuber showed that the planet can be divided into two approximately hemispherical provinces, a southern province dominated by a progressive thinning of the crust from south to north and a northern province of uniformly thinner crust, key constraints on the planet’s differentiation and early impact history. Zuber’s group also determined the density and inferred ice content of the south polar layered deposits and documented that seasonal variations in polar topography correlate with variations in the planet’s gravitational oblateness and changes expected from models of atmospheric circulation and CO2 exchange.
Moreover, Zuber led the analysis of laser altimetry observations of Mercury made by the MESSENGER spacecraft that yielded the first maps of crustal thickness in Mercury’s northern hemisphere. She led the determination of the first detailed three-dimensional shape model for an asteroid (433 Eros) and determined that body’s mean density and porosity. She championed the idea that many tectonic features on the inner planets arise from instabilities in the lithosphere induced by in-plane or basal shear stress, and with this idea she inferred mechanical properties of the lithosphere in extensional and contractional regimes on Earth, Venus, and Mars.
–Sean C. Solomon, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York