James B. Macelwane Medal
Citation
Zhongwen Zhan is an inspiring young seismologist who has fundamentally advanced our understanding of earthquakes and Earth structure while inventing seismic ocean thermometry. Among observationalists Zhongwen has been pushing seismic methods forward at a breathtaking pace while addressing a remarkable range of geophysical problems.
Emerging as a leader in the resurgence of work on deep-focus earthquakes, Zhan has made important discoveries, stitched them together with existing ones, and advanced the hypothesis that two different styles of rupture occur in concert, one in the cold core of slabs and another outside in the warm mantle. Zhongwen discovered that deep-focus earthquakes can exhibit rupture at supershear speeds and that great deep events initially rupture rapidly before propagating slowly outside of the cold core of subducted slabs. A pathfinder in the explosive growth of ambient noise seismology, Zhongwen was one of the first to demonstrate the emergence of seismic body waves from noise correlations, allowing detection of features at depth.
Zhongwen Zhan has rapidly accelerated the use of fiber-optic cables as seismic sensors. Although these cables were originally developed in industry, seismologists have surged ahead to explore applications to fundamental geophysics, and many important firsts have been made by Zhongwen and his students. Illuminating dark fiber, they showed that distributed acoustic sensing could detect teleseisms and surface waves from remote earthquakes. Following the 2019 Ridgecrest, California, earthquakes, they created the largest fiber deployment to date and studied aftershocks and near-field seismic shaking in remarkable detail. But with existing methods limited to fiber lengths less than 100 kilometers, Zhongwen, never at rest, obtained access to fiber between Los Angeles and Chile and detected earthquakes and ocean-induced changes along the entire cable by monitoring anisotropy of the normal communication signals — a potentially transformative method for geophysical monitoring.
A long-sought-after target of physical oceanography is the monitoring of acoustic waves in the SOFAR channel to obtain stable averages of changes in ocean temperature. In an extraordinary breakthrough with his then postdoc Wenbu Wu, Zhongwen and others demonstrated that by using small repeating earthquakes they could infer subtle changes in wave speed and ocean temperature over 3,000 kilometers — a novel tool that promises to provide averages of changes in ocean temperature over an ocean basin.
— Michael Gurnis
California Institute of Technology
Pasadena, California
Response
Thanks, Mike, for the kind words and the nomination. I am a seismologist, so it is my great honor to receive the AGU medal named after James Macelwane, a pioneering American seismologist, the first one west of the Mississippi River.
I was drawn to seismology in 2005 after hearing an excellent public lecture by then a new professor at the University of Science and Technology of China, Sidao Ni, about the 2004 Sumatra earthquake. I was amazed by how much seismologists can learn from seismograms about structures and processes deep inside the Earth. After advising me on my master’s thesis, Sidao suggested I get a Ph.D. abroad. Eventually, I chose to work with his Ph.D. adviser, Don Helmberger, at the California Institute of Technology (Caltech) Seismo Lab. I am forever grateful for my student time with Sidao and Don.
Since my student time, I have been curious about many topics in seismology, such as ambient seismic noise, deep Earth structure, earthquake ruptures, deep earthquakes, the subduction zone and glaciers. I was lucky to get mentoring from various domain experts like Rob Clayton, Hiroo Kanamori, Mike Gurnis, Jennifer Jackson, Mark Simons, Victor Tsai and Peter Shearer. The curiosity has only expanded since I became a faculty member, and I am indebted to close collaborators like Jorn Callies, Alireza Marandi, Ruby Fu, Valey Kamalov, Miguel Gonzalez-Herraez, who are all outside geophysics and tolerated my ignorance in their fields. I have also been fortunate to work with an amazing team of students and postdocs at the Caltech Seismo Lab, who made all the accomplishments possible. I am super proud of them!
Finally, I want to thank my family, especially my parents; my wife, Qiong; and two daughters, Sophie and Mia, for their love and support.
—Zhongwen Zhan
California Institute of Technology
Pasadena, California