Paul Segall has contributed to observation, theory, and modeling of earthquake and volcanic processes inferred from surface geodetic measurements. Many practitioners in these fields, including past Whitten medalists, have had an impact on one of these specialist areas. His research on the earthquake deformation cycle has led to new kinematic and dynamical models and analysis methods that extract maximum information from space geodetic data and has shed new light on previously poorly understood earthquake processes. His work has quantified and constrained how volcanoes grow, evolve, and deform, and he has made state-of-the-art space geodetic measurements using models he has himself defined and developed from fundamental principles. Paul has made major contributions in all of them, his work defines where these fields are going, and Paul is their preeminent leader. Since 1990 he has trained a generation of graduate students and postdoctoral scholars, many of whom are now leaders in their fields in academia and government laboratories. His 2010 textbook Earthquake and Volcano Deformation, developed and refined over a decade of teaching, has become an instant classic, an essential reference for all researchers in this field.
Since the mid-1980s, Paul has led his field in modeling and understanding the earthquake cycle, its analysis, and state-of-the-art modeling of seismic processes. From the mid-1980s to the mid-2000s, he tested the prevailing models of earthquake recurrence. Paul and his coworkers developed creative and innovative methods entirely new to the field. These methods were strictly rigorous inversions and statistically defensible methods that showed the recurrence of earthquakes obeyed neither of the popular and prevailing models in use at the time (characteristic, time predictable and slip predictable).
Paul recognized early on significant methodological gaps in analysis of earthquake-related geodetic data. He developed ingenious new methods to extract maximum signal from sparse or incomplete data when the actual candidate models were at least approximately known (the now classic network inversion filter). The method is extremely flexible and versatile and is applicable to classical triangulation data to infer coseismic slip in historical earthquakes as well as to identify anomalies in GPS time series (for example, slow slip events or suspected earthquake precursors).
Paul and his students have developed geodetic methods to innovatively model the large-scale kinematics and dynamics of magmatic extension and intrusion, particularly on Hawaii. This work has shown not only that the south flank of the island is inexorably sliding toward the sea but also that it is driven by magma injection into the rift zones. Previously unknown silent slip events, associated with smaller triggered earthquakes and coupled to the injection events, have been identified.
—Wayne Thatcher, Earthquake Science Center, U.S. Geological Survey, Menlo Park, Calif.