BR
Member Since 1978
Barbara A. Romanowicz
Professor , University of California Berkeley
Honors and Awards

William Bowie Medal
Received December 2019
Barbara Romanowicz was awarded the 2019 William Bowie Medal at AGU’s Fall Meeting 2019 Honors Ceremony, held on 11 December 2019 in San Francisco, Calif. The medal is for “outstanding contributions for fundamental geophysics and for unselfish coopera...
Barbara Romanowicz was awarded the 2019 William Bowie Medal at AGU’s Fall Meeting 2019 Honors Ceremony, held on 11 December 2019 in San Francisco, Calif. The medal is for “outstanding contributions for fundamental geophysics and for unselfish cooperation in research.”  
Citation

With 4 decades of cutting-edge work in seismology, Barbara Romanowicz has transformed our understanding of the Earth’s mantle and core. She has made foundational contributions to geophysical infrastructure, and through the Cooperative Institute for Dynamic Earth Research (CIDER), she has brought together hundreds of early-career and senior scientists from across the geosciences to study Earth.

Dr. Romanowicz’s research is characterized by innovative seismological theory, sophisticated numerical methods, and insightful interpretations that have illuminated key Earth processes. Using tomography to image the distribution of seismic wave velocities, anisotropy, and attenuation, she has made groundbreaking connections between large-scale Earth structure and mantle convection. She demonstrated that the two large-scale low shear wave velocity regions at the base of the mantle consist of a bundle of thicker-than-expected hot upwelling plumes connected to major hot spots at the surface and showed that the roots of some of these plumes may contain partially molten material. She also made fundamental contributions to our understanding of the continental lithosphere and how it couples to the deeper mantle, showing that continental and oceanic lithospheres are both underlain by an asthenosphere that is highly anisotropic because of shear caused by plate motion and that the mantle lithosphere of ancient cratons contains two layers of anisotropy that relate to different stages of lithospheric formation. Dr. Romanowicz has been a leader in determining inner core structure, including attenuation and anisotropy and their implications for core formation and evolution. She has also contributed innovative studies of seismic wave sources, including earthquake statistics, scaling relationships, variations in rates of occurrence of great earthquakes, and the origins of the Earth’s “hum” (the continuous excitation of Earth’s free oscillations).

Dr. Romanowicz has given generously of her time to build lasting and open access infrastructure for the geoscience community. She led the development of Geoscope (1981–1990), the first global network of very broadband seismic stations. As the director of the Berkeley Seismological Laboratory (1991–2011) she initiated a real-time earthquake notification system in Northern California, expanding seismic and geodetic networks and data access. She is a key advocate and pioneer of long-term ocean bottom seismic stations.

Dr. Romanowicz was the visionary driving force behind CIDER for 15 years, each summer bringing together an interdisciplinary cohort of junior and senior scientists to engage in a month of lectures, tutorials, and research projects. CIDER has created a new generation of researchers who embrace cross-disciplinary study of Earth’s interior.

—Karen M. Fischer, Brown University, Providence, R.I.

Response
President Bell asked me to sit down before breaking the news to me—this was wise! This unexpected Bowie Medal is both an amazing and humbling honor. The only shadow is the fact that Louise Kellogg, who conominated me with Karen Fischer, is no longer with us. My warmest thanks to both of them, as well as to the other colleagues who supported my nomination. I was fortunate to come to Institut de Physique du Globe in Paris to pursue a Ph.D. at the time when Claude Allègre was transforming it into a world-class institution. I have a connection with William Bowie: I started my research career in geodesy. High-precision measurements of Earth’s global gravity field were then becoming available owing to satellite geodesy. My Ph.D. advisor, Kurt Lambeck, suggested that I use these data to build a continental-scale model of the upper mantle beneath North America, but this quickly turned into a seismic travel time tomographic model, the first at that scale. My postdoc adviser at the Massachusetts Institute of Technology, Kei Aki, wanted me to work on earthquake prediction, but I chose to play with seismic surface waves instead. Looking back from my own experience as an adviser, I appreciate their open-mindedness and patience. With the advent of very broadband seismic sensors and digital recording, the expansion of global and regional networks, open access to large-capacity data archives, increasing computer power, and concurrent theoretical developments, global seismic imaging has made tremendous progress in the past 40 years, but we are not done. A costly and technologically challenging task is to improve coverage of the ocean floor, key to further our understanding of the connections between deep mantle circulation and plate motions, and of Earth’s inner core evolution and, with it, of the geomagnetic field. We also need to continue educating ourselves and the successive younger generations across disciplines: Only by bringing together the different pieces of the puzzle can we gain a profound understanding of how Earth works. This is why we founded CIDER with Adam Dziewonski, Louise Kellogg, and Stan Hart. I wish to recognize their contributions, along with many other colleagues, to making it a successful endeavor. My graduate students, postdocs, collaborators, and colleagues over the past 4 decades deserve to share this honor with me. I owe a big piece of this medal to my husband, Mark Jonikas, and children, Martin and Magda. —Barbara Romanowicz, University of California, Berkeley; also at Collège de France, Paris
See Details
Close Details
Outstanding Reviewer Award - JGR-Solid Earth
Received December 2018
Outstanding Reviewer Award - JGR-Solid Earth
Received December 2015
Inge Lehmann Medal
Received December 2009
Barbara A. Romanowicz was awarded the 2009 Inge Lehmann Medal at the AGU Fall Meeting Honors Ceremony, held on 16 December 2009 in San Francisco, Calif. The medal is for “out-standing contributions to the understanding of the structure, composition, ...
Barbara A. Romanowicz was awarded the 2009 Inge Lehmann Medal at the AGU Fall Meeting Honors Ceremony, held on 16 December 2009 in San Francisco, Calif. The medal is for “out-standing contributions to the understanding of the structure, composition, and dynamics of the Earth’s mantle and core.”  
Citation

It is my pleasure to introduce Barbara Romanowicz as the seventh recipient of the AGU Inge Lehmann Medal. Barbara’s work covers the full span of seismological studies from the crust to the inner core—not unlike Inge Lehmann’s. Barbara’s transformational contributions come from her investigations of attenuation (Q) in the Earth and, in particular, its lateral variations. This is an enormously difficult research area, since studies of attenuation require measurements of amplitude, and amplitudes, unlike the phase, depend on the details of the laterally varying structure. Barbara’s studies of lateral variations in attenuation began 20 years ago. In 1994, she discovered the pattern of attenuation in the transition zone and its correlation of low-Q with the distribution of hot spots. More recently, she developed a new three-dimensional (3-D) model of Q and pointed out the correlation of occurrence of superplumes in the lower mantle and attenuation in the transition zone.

The other area of Barbara’s fundamental contributions concerns application of asymptotic properties of normal modes to studies of lateral heterogeneity. Following early theoretical developments, she molded it into a tool used to obtain 3-D seismic velocity models. Her models of lateral heterogeneity have improved in the radial and horizontal resolution and are among those most frequently cited. Her work has now expanded to inversion for anisotropy, on both global and regional scales. She published a series of studies on the structure of the inner core, particularly its anisotropy. Most recently, she observed a change in the PKiKP amplitude over a period of 10 years, attributed to short-wavelength topography on the inner core boundary; differential rotation is one possible explanation.

The “Earth’s hum” is a beautiful example of coupling between the atmosphere, oceans, and solid Earth. Winds cause ocean waves that in turn excite free oscillations of the Earth observed in a range of periods from 200 to 500 seconds. Barbara was the first to locate the regions of the oceans where most of the excitation occurs: the North Pacific in winter and Southern Ocean in summer.

While Barbara’s research accomplishments are remarkable and should be sufficient for awarding her a medal, a description of her career would be incomplete without mentioning her contributions to the seismological infrastructure. A very major early effort was the establishment of a global network called Geoscope; with the first stations installed in 1982–1983, this effort preceded the Global Seismographic Network initiative of the Incorporated Research Institutions for Seismology (IRIS). Geoscope fills in vital locations in global coverage and produces excellent data, available to all. Not the least is her role in bringing back to eminence the seismographic network, and seismology in general, at University of California, Berkeley. As the director of the Seismological Laboratory for nearly 20 years, she has developed a number of new programs not only in broadband seismology but also in geodesy. She is leading the effort to establish the Cooperative Institute for Dynamic Earth Research (CIDER), intended to build a new, interdisciplinary approach to solving complex problems in Earth sciences.

In my opinion, Barbara is the most outstanding woman seismologist after Inge Lehmann. I believe it is most appropriate for AGU to award her the medal named after her predecessor.

—ADAM M. DZIEWONSKI, Harvard University, Cambridge, Mass.

Response
Thank you, Adam, for your generous and flattering introduction. Thanks to AGU for deeming me worthy of this honor, and to my graduate students, postdocs, and collaborators, who share this award with me today. Studies of the Earth’s mantle and core span several sections of AGU. I feel fortunate to be awarded the Inge Lehmann Medal this year, as I know there is a long waiting list of highly deserving colleagues. Many roads lead to Rome, and a variety of paths lead to becoming a seismologist. In my case, as in many others’, it happened quite by chance. Not unlike Inge Lehmann, my training was in mathematics. After finishing my bachelor’s degree, I happened upon a poster advertising a master’s program in fundamental astronomy, including 2 weeks of training at the Observatoire du Pic du Midi, in the high Pyrenees. At that time, I would have jumped on any opportunity to leave the city and climb mountains. This led me to the calculation of orbits of spacecraft around the Earth and the Moon that are affected by perturbations in the gravitational field. This was not long after the discovery of lunar “mascons” and when the first high-order descriptions of the Earth’s geopotential from satellite measurements were being produced. For me, it was the first encounter with the study of the Earth’s interior. This ultimately led me to the Institut de Physique du Globe de Paris (IPG) to work toward a Ph.D. with Kurt Lambeck, on the inversion of gravity data. One day I wandered onto the seismology floor at IPG and found Georges Poupinet displaying colorful global maps of seismic travel time anomalies—these were precursors of seismic tomography—and I soon discovered that seismology provides far better constraints on deep-Earth structure than gravity. Thirty years later, I still enjoy seismology as my primary research tool. I am grateful to Kurt Lambeck for getting me off to a good start, and to Claude Allègre for making IPG a stimulating research environment and for entrusting me with the Geoscope program. I had the privilege of having Kei Aki as a postdoc advisor and Adam Dziewonski as a partner in several rewarding initiatives over the years, starting with the International Federation of Digital Seismograph Networks, the International Ocean Network, and more recently, CIDER. The University of California, Berkeley has been a wonderful place to work for the past 18 years. I thank my parents for broadening my horizons by bringing me up bilingual and for having the foresight to send me to England at the age of 10, anticipating that a fluent knowledge of English would facilitate whatever career I chose in today’s world. Last but not least, I wish to thank my husband, Mark Jonikas, for his infinite patience and support, and my children, Martin and Magda, for their cooperation by having slept through the night from the age of 2 months, by having spared us any teenage crises, and by having turned into fine young adults, both now starting their own post-Ph.D. careers in science. —BARBARA A. ROMANOWICZ, Berkeley Seismological Laboratory, University of California, Berkeley
See Details
Close Details
Beno Gutenberg Lecture
Received December 2004
Union Fellow
Received January 1990