Hiroo Kanamori has made outstanding contributions to fundamental geophysics, earthquake physics, and hazard mitigation, but equally important is his contribution to the global geoscience community through his unselfish cooperation with a myriad of colleagues and students over the years.
Hiroo started research work at the University of Tokyo in the 1960s by designing and building a shipboard gravity meter, which was followed by his study of the crust–mantle structure of Japan. Being so versatile, he soon was engaged in experimental and theoretical research with younger colleagues on the physical properties of rocks and minerals, the shock wave equation of state, elastic waves, thermal diffusivity, and electrical conductivity, to name just a few subjects. All these areas were highly pioneering at that time. These experiences were instrumental in providing Hiroo with an unusually broad scope in his later research. After a few years, around 1970, he decided to concentrate his efforts on seismology and was apparently fascinated by the power of the wave equation.
His monumental works in the early 1970s verified the newly born plate tectonics idea by analyzing great island arc earthquakes and presenting the notion of tsunami earthquakes. After moving to the California Institute of Technology in 1972, his activity bloomed in diverse fields. The introduction of moment magnitude, quantification of great earthquakes, and the diversity of subduction zones are some examples. After around 1980, volcanic eruptions at Saint Helens and Pinatubo were apt targets for his long-period techniques. His discovery of the W phase, establishment of real-time seismology, and its application to the Caltech-USGS Broadcast of Earthquakes (CUBE) system for the mitigation of seismic hazard have followed one after another, with each one being truly epoch making.
Hiroo’s contributions to the field of seismology are clear to anyone familiar with modern seismology and geophysics. His long exemplary track record of unselfish cooperation is also exceptional. Hiroo is a private, self-effacing individual who has always remained focused on scientific research. But he has mentored and inspired generations of students and colleagues. They can all attest to how freely he offered his guidance to anyone and how keenly interested he was in colleagues’ work. It is impossible to count how many publications were critically shaped or even sparked by insights that Hiroo offered.
Hiroo Kanamori is a true gentleman and always most friendly to people regardless of their gender, ethnicity, or race. Not only a great number of students but also the whole geophysical community have profoundly benefitted from him. Together with the late Kei Aki, Hiroo Kanamori is really the “made in Japan and perfected in America” giant star who will remain shining brightly in the history of seismology.
—S. Uyeda, The Japan Academy, Tokyo, Japan
“It is a pleasure to introduce the recipient of the Bucher medal, Hiroo Kanamori. We honor him for outstanding contributions in the use of seismological methods to study the physics of earthquakes and the tectonic processes that cause them.
“The ideal seismologist would have three talents: (1) a sophisticated understanding of the physics of seismic wave generation and propagation; (2) an uncanny ability to extract information from seismograms (both intuitively and via digital data processing), and (3) the geophysical intuition to use seismograms to both ask and answer questions about how the Earth works. Many fine seismologists have one of these talents, a select few have two, and Hiroo excels at all three.
“Hiroo’s research career began in the early sixties at Tokyo University, where he helped develop a seagoing gravimeter and worked on high-pressure mineral physics experiments. He began work in seismology in the late sixties, by which time the formulation of plate tectonics showed how valuable seismological data could be in tectonic studies. At that time, however, techniques existed to exploit only a small fraction of the information in seismograms. In particular, only the times of first-arriving seismic waves and their polarities were used to infer the location and fault geometry of earthquakes. As a result, seismologists could study only the initial rupture of large and complex earthquakes and were seriously hampered by the comparative sparseness of seismic stations, including their restriction to on-land sites.
“In the past 20 years, however, this situation has changed dramatically as a result of pioneering studies by Kanamori and others. One of the key elements came from advances in the theory of the Earth’s normal modes, which can compute the entire displacement field generated by an earthquake. One of the most successful approaches, introduced by Kanamori in 1970, used mode theory to study earthquake sources utilizing seismograms recorded at different azimuths from the earthquakes. In short order, first in Japan and then after he came to Caltech, Hiroo studied the major subduction zone earthquakes.
These included the gigantic 1960 Chilean earthquake, which he estimated had an average slip of 21 m on a 800 by 200 km fault. He not only used the seismic data from the world-wide Standard Seismograph Network, which were then state of the art, but also developed methods to analyze older data from important earthquakes, including the great 1923 Tokyo earthquake.
“His series of papers based on these studies led to much of our current picture of how the largest earthquakes reflect the release of strain built up at the locked interface between the subducting and overriding plates. Kanamori also showed that some large earthquakes indicate internal failure of the subducting slab under its own weight.
“He went on to propose that there were systematic differences between subduction zones in the fraction of the total plate motion that occurred as seismic slip and that these differences reflected fundamental differences in the nature of the plate interface that were also manifested in the pattern of volcanism and subduction zone morphology.
“Hiroo has also been one of the leaders in elucidating the physics of earthquakes. His work clarified the relationship between the measured seismic moment and the minimum energy released by earthquakes and established the `moment magnitude’ scale, which provides a consistent way of characterizing the size of earthquakes from small to large, while maintaining continuity with the work of Richter and Gutenberg.
“Another important thrust of his work has been developing methods to use seismograms to study the details of earthquake rupture. Hiroo has been one of the leaders in showing how during earthquakes the amount of slip varies significantly in space and time along faults. These results, some of which can now be confirmed by high-resolution geodesy, provide the `ground truth’ for attempts to use the results of laboratory studies and theories of fracture to understand how earthquakes actually start and work.
“These are a few highlights of his accomplishments: time prohibits me from saying much more. I do not have time to discuss many others, including development of a sophisticated new seismic network in southern California, contributions to understanding California earthquakes and tectonics, and efforts to understand and reduce earthquake hazards. Similarly, I can only briefly note his overall impact on seismology and geophysics, via his publications, his professional service, and his interactions with others. I vividly recall many late night sessions with him when I was in graduate school, discussing both specific research questions and more general geophysical issues.
It seemed as though Hiroo knew just about everything about earthquakes and seismology and a lot about almost any topic in geophysics. The opportunity to exchange ideas and learn was invaluable. My experience is surprisingly common: both in Japan and in the United States, an enormous number of us have been influenced by Hiroo as students, coworkers, colleagues, and students of his students.
“His skill, and insight, and his willingness to share them have done much to shape geophysics. We are very fortunate to have him.”
—SETH STEIN, Northwestern University, Evanston, Ill.