Earth’s crust is important to us because we happen to live on it. It also contains more than half of Earth’s internal heat production, as well as most of its potassium and phosphorus. Its formation has left the residual mantle in a dramatically different state. Thus, knowing its composition is critical to any understanding of how Earth’s interior works. Roberta Rudnick is the world’s leading authority on the composition of the continental crust and lithosphere. Toward this end, she integrated geophysical properties of the crust with a comprehensive array of geochemical data to elucidate the role of the lower crust, which is inaccessible to direct observation. Today, if one is looking for the best estimate of the average continental crust or of its upper or lower portions, the go-to papers are those of Roberta Rudnick and her coworkers David Fountain and Shan Gao. The continental crust is welded to a much more massive subcontinental lithosphere. To elucidate the origin and evolution of this lithosphere, Roberta has conducted definitive studies on lithospheric peridotite and eclogite xenoliths, concentrating on trace element and isotope systems.
During the past several years, she has also become a leader in using one of the new, often called unconventional tracers, namely, lithium isotopes, to study near-surface continental processes such as weathering and intracrustal fluid flow, as well as recycling of near-surface continental material into the mantle. With her graduate student Fang-Zhen Teng, she demonstrated unequivocally, through detailed field and analytical work on magmatic aureoles, that reactive transport causes kinetic isotope fractionation. This work has opened up a new area of research on using kinetic isotope fractionation to constrain the timescales of diffusive and advective geochemical processes.
Most recently, together with her postdoc Richard Gaschnig and student Ming Tang, she has tackled the thorny problems posed by the long-term chemical evolution of the crust. Ancient crust is sparsely exposed and affected by weathering alteration and is thus subject to serious sampling biases. Her group dealt with both problems by analyzing ancient glacial tills, rather than sampling water- or wind-transported sediments, and developing weathering-resistant chemical proxies to show that ancient continents were richer in Fe and Mg and contained less granitic material than today’s crust.
The Harry H. Hess Medal is intended to honor “outstanding achievements in research on the constitution and evolution of the Earth and other planets.” Roberta’s research scope and accomplishments fit that description perfectly.
—Albrecht W. Hofmann, Max Planck Institute for Chemistry, Mainz, Germany; also at Columbia University, New York
One sign of a great scientist is that he or she uses fundamental observations in nature or experiments to drive questions and hypotheses on how natural processes work. Roberta satisfies all of these criteria, and more.
Working as a graduate student with Roberta, I came away with a deep appreciation for the value of having data. One example of this philosophy was Roberta’s seminal paper on the average composition of the continental crust, which has stood the test of time. But coming up with an estimate of the composition of a reservoir was really just a step in Roberta’s grander goals of answering the question of how the continents formed. The problem is that this question is too vague to mean anything to the noninitiated, and to the experts, the question is ill-posed because continent formation is so complicated that there seems to be no simple answer. It is in these circumstances where Roberta shines the most.
Roberta has the uncanny ability to see the big picture by synthesizing and distilling seemingly disparate details into a well-organized and clear message. A good example of this is Roberta’s 1995 paper “Making continental crust.” Although this was a review paper, Roberta formulated some of the most important questions or controversies in the field in a concise manner. Most review papers are just summaries of current paradigms, and after 10 years, they stop being cited or are replaced by new review papers. Roberta’s paper, however, continues to be cited, a reflection that much research right now is still driven by the questions that Roberta so elegantly laid out.
Finally, an enviable characteristic of Roberta is that she’s always exploring various tools to answer her questions. She appreciates the need to be interdisciplinary: Witness her various papers with geophysicists on the thermal state of continents and deep lithospheric evolution. She also systematically explores new techniques and new isotopic systems, as exemplified by her contributions to laser ablation ICP-MS, osmium isotopes, and now lithium isotopes, all to address specific issues on continent formation and dynamics. There is thus no doubt that Roberta is one of our great leaders and communicators in the field of geochemistry.
I will end my citation on a more personal note. When I came as a student to work with Roberta, even though I thought I knew a lot, I didn’t really know how to do science. By simply being her apprentice, I learned from Roberta how to be a scientist. Roberta has been and continues to be an inspiration and role model to so many of us. It is thus fitting that she is one of this year’s recipients of the N. L. Bowen Award.
—Cin-Ty A. Lee, Rice University, Houston, Texas