
Maureen Long has made seminal contributions to our understanding of circulation in the Earth’s mantle by combining seismology, mineral physics, and geodynamics. Much of Maureen’s work concerns subduction zones, which are delineated by deep ocean trenches, where tectonic plates sink, or subduct into the Earth’s mantle. The direction of mantle flow driven by convection, plate motion, and sinking slabs is best detected with seismic anisotropy that is caused by deformation-induced fabric in minerals. Maureen Long is a pioneer and leader in using seismic anisotropy to reveal how slabs subduct and the mantle circulates.
For her graduate work at the Massachusetts Institute of Technology, Maureen combined seismic observations with numerical models and mineralogical experiments to study anisotropy beneath Japan. With her multidisciplinary tool kit, she then began her major research thrust on subduction zones, first as a postdoctoral fellow at the Carnegie Institution of Washington’s Department of Terrestrial Magnetism and later as a faculty member at Yale. Maureen led or co-led seismological field deployments in Oregon, the Appalachians, and Peru and an oceanographic survey over the U.S. Atlantic continental shelf. Her work resulted in key insights on subduction anisotropy and mantle flow near, for example, Japan, Tonga, Alaska, Oregon, Peru, and the Caribbean and Scotia Arcs.
Maureen’s early studies showed that anisotropic fabric in the mantle beneath subduction zones is pervasively trench parallel, which suggests a component of flow perpendicular to plate motion. This discovery implied that slabs do not merely sink vertically but roll backward, squeezing the mantle out of the way and parallel to the
trench. However, with new data, Maureen showed that while subduction zones attached to old plates have trench-parallel fabric, younger ones have trench-perpendicular fabric; this suggests that subducting plates transition from steadily subducting to foundering backward, depending on their age.
Maureen’s contributions extend beyond studying subduction zone flow. She and colleagues used their Peru data to show that shallow slabs are weak and undergo extensive internal deformation. Her analysis of anisotropy in the lower mantle indicates flow deflected by chemically stable “piles” (large low shear velocity provinces) at the core-mantle boundary. Her recent work on anisotropy in the mantle transition zone and the lithosphere beneath continents has yielded new insights into deformation in these regions of the mantle.
Maureen Long is a rising star of mantle seismology and dynamics. With her field programs and interdisciplinary approach, she has made, and will continue to make, lasting discoveries about subduction zones and how the Earth’s mantle convection engine works.
—David Bercovici, Yale University, New Haven, Conn.

The dynamics of Earth's D″ layer at the base of the mantle plays an essential role in Earth's thermal and chemical evolution. Mantle convecti...


