I am pleased and honored to cite Amy Clement for the 2007 James B. Macelwane Medal. Amy’s work has introduced new ways of thinking that altered research strategies; that is, she is an intellectual leader. Not everyone agrees with her ideas, but no paleoclimate scientist ignores them. Amy’s work has been instrumental in changing the way paleoclimatologists think about the tropics and their influence on global climate. The ocean-atmosphere dynamics concepts that she introduced to paleoclimate are now widely used.
Amy’s talk at the 1999 AGU conference “Mechanisms of Millennial-Scale Global Climate Change” showed how the tropical ocean-atmosphere system could react strongly and abruptly to orbital variations. This offered a plausible alternative to the North Atlantic centered view of abrupt—and not so abrupt—climate change. Her work, which draws on a solid understanding of modern climate dynamics, complements her willingness to work with a broad variety of paleoclimate archives and the scientists who produce them. Amy thus links the paleoclimate community with the modern climate dynamicists. The breadth of her scientific understanding is an essential ingredient in her ability to be scientifically persuasive in challenging old paradigms without being argumentative.
In the past decade there has been a dramatic expansion in paleo-ENSO studies. The modeling study of Clement et al. [Paleoceanography, 2000] provided an explanation of how the changes in orbital configuration would affect the coupled ocean-atmosphere dynamics in the tropical Pacific. This paper proposed that though ENSO did not shut down during the Holocene, the cycle was weaker in the early Holocene. This “prediction,” which prompted a new interpretation of the Ecuadorian lake record of Rodbell et al. [Science, 1997], was soon verified by an analysis of fossil corals from New Guinea [Tudhope et al., Science, 2001]. Paleoproxy data published since then are all consistent with this picture.
In other publications Amy has extended these concepts and also addressed a number of other paleoclimate questions, including orbital impacts on the Hadley circulation and the relationship between tropical variations and the thermohaline circulation. She has also addressed a number of important questions about modern climate, including the mean tropical radiation budget [Clement and Soden, 2005], recent changes in the strength of the Hadley cell [Mitas and Clement, 2006], and the reasons for the existence and shape of the tropical warm pool [Clement et al., 2005].
When things go wrong, the ordinary scientist retreats to safe ground while the excellent one turns the problem into unexpectedly deep results. Amy has time and again turned an apparent dead end into something of value. The work she did on tropical thermostats is a prime example: She took a wrong idea of mine and was “lucky” enough to extract something interesting from it. Amy has consistently worked on problems that matter, a reflection of her precocious intellectual maturity and scientific judgment. This Macelwane Medal is fitting recognition of a splendid beginning; I am sure there is much more to come.
—MARK A. CANE, Lamont-Doherty Earth Observatory, Palisades, N. Y.
The sea surface temperature (SST) in the subpolar North Atlantic decreased during the past century, a remarkable feature known as the “warmin...