David Smith is a leader in satellite geodesy whose groundbreaking contributions have spanned tectonophysics, geodynamics, and planetary science. Born and educated in Great Britain, he joined NASA’s Goddard Space Flight Center in his early career, where he started the gravity modeling group. There he conceived of and developed Goddard’s GEODYN system of programs, which to this day is considered the state-of-the-art computational tool for satellite orbit determination. Dave was among the first to measure the fundamental parameters of the Earth’s global gravity field, as well as its polar motion and variations in length of day. Measurements of deviations from Earth’s geodetic reference frame that he was instrumental in establishing led to characterization of atmospheric motions, ocean and solid Earth tides, and the viscosity of the mantle.
A second major aspect of Dave’s work has been in measuring directly the motions of Earth’s tectonic plates. He was Project Scientist of the decade-long NASA Crustal Dynamics Project (CDP), an initiative that involved hundreds of individuals at numerous institutions. In this role he
set the tone for how space geodesy should work as a community. The CDP, which utilized very long baseline interferometry and satellite laser ranging, established the surprisingly strong agreement of instantaneous plate drift rates with those over geologic time scales.
Begining in the mid-1980s Dave turned his attention to the planets. He published a gravity field for Mars that was the first high-resolution spherical harmonic model of a planet other than Earth. He led the Clementine geophysics team that produced the first global topography and crustal thickness maps of the Moon. On the NEAR Shoemaker mission, Dave and colleagues produced the firstdetailed three-dimensional view of the shape of an asteroid (433 Eros), and from volume and mass came the first precise estimate of an asteroid’s mean density.
Dave was Principal Investigator of the Mars Orbiter Laser Altimeter (MOLA) that flew on Mars Global Surveyor and produced a global topographic model of Mars that was more accurate than Earth’s topographic model. MOLA established the planet’s flat northern hemisphere as the possible location of an ancient ocean, revealed pathways of past water transport, and yielded the present-day surface water inventory from the volumes of the polar caps. He measured the seasonal accumulation and ablation of Mars’ CO2 snow, as well as gravity field changes due to Mars’ CO2 cycle.
Dave is Principal Investigator of the Lunar Reconnaissance Orbiter’s Lunar Orbiter Laser Altimeter, the first multibeam planetary laser altimeter, which yielded the highest-resolution global topographic model for any planet. On NASA’s MESSENGER mission, Dave leads the gravity experiment that established bounds on internal structure as well as discovering mass concentrations (mascons) on Mercury. He also led experiments that made the longest two-way (24 Mkm) and one-way (87 Mkm) laser links.
Dave’s data sets have led to many scientific discoveries by others. His geodetic grids of the planets have allowed precise geolocation and coregistration of data from other experiments, increasing their value and aiding precision landing of Mars landers and rovers.
Dave Smith’s achievements in terrestrial geodesy or planetary geodesy alone would merit the Whitten Medal; for the combined contributions the case is extraordinary.
–Roger J. Phillips, Southwest Research Institute, Boulder, Colorado
The formation and evolution of the South Pole‐Aitken (SPA) basin is critical to relating large impact basin formation and modification to lun...